Q 1: If sin θ = 1/Ö2, find the values of cos θ, tan θ cos θ = Ö2; tan θ = 1 cos θ = 1/Ö2; tan θ = 1 cos θ = 1; tan θ = 1 cos θ = 1; tan θ = 1/Ö2

Q 2: If tan B = Ö3, find sin B, cos B. sin B = Ö3/2; cos B = 1/Ö2 sin B = Ö2; cos B = 1/2 sin B = Ö3/2; cos B = 1/2 sin B = 1/2; cos B = Ö3/2

Q 3: If cos A = 1/3, find sin A, tan A. sin A = 2Ö3, tan A = 2Ö2/3 sin A = 2Ö2/3, tan A = 2Ö2 sin A = 2Ö2/3, tan A = 2/3 sin A = 2Ö2, tan A = 2Ö2

Q 4: if sin θ = 1/Ö10, find cos θ . 1/Ö10 1/3 3/Ö10 Ö10

Q 5: If sin A = 2/3, find tan A. Ö5/3; 3/2 1 2/Ö5;

Q 6: If cos B = 4/5, find sin B. 1 3/5 3/4 1/2

Q 7: Given cos θ = 3/5, calculate the value of sin θ, tan θ. sin θ = 4/5; tan θ = 4/3 sin θ = 4/5; tan θ = 4/3 sin θ = 4/5; tan θ = 4/3 sin θ = 4/5; tan θ = 4/3

Q 8: If sin θ = 8/17, then tan θ is 15/17 8/25 8/15 17/15

Question 9: This question is available to subscribers only!

Question 10: This question is available to subscribers only!

